organic compounds

7605 measured reflections

 $R_{\rm int} = 0.026$

3073 independent reflections

2327 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(4-Methoxyphenyl)piperazin-1-ium chloride

Zia-ur-Rehman,^a M. Nawaz Tahir,^b* Muhammad Danish,^c Niaz Muhammad^a and Sagib Ali^a

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, ^bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and ^cUniversity of Sargodha, Department of Chemistry, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 2 February 2009; accepted 5 February 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.139; data-to-parameter ratio = 22.4.

In the title compound, $C_{11}H_{17}N_2O^+ \cdot Cl^-$, the dihedral angle between the benzene ring and the basal plane of piperazine ring is 39.20 (8)°. In the crystal, intermolecular $N-H\cdots Cl$ hydrogen bonds occur. There is also a $C-H\cdots\pi$ interaction between the benzene rings.

Related literature

The title compound was obtained as a by-product in a continuation of work on the synthesis of tin complexes containing piperazine, see: Zia-ur-Rahman et al. (2006, 2007). For related structures, see: Lu (2007); Sadiq-ur-Rehman et al. (2007).

Experimental

Crystal data

 $C_{11}H_{17}N_2O^+ \cdot Cl^ M_r = 228.72$ Orthorhombic, Iba2 a = 10.2890 (7) Å b = 31.5218 (18) Å c = 7.5909 (5) Å

V = 2461.9 (3) Å³ Z = 8Mo Ka radiation $\mu = 0.29 \text{ mm}^-$ T = 296 (2) K $0.28 \times 0.22 \times 0.15 \text{ mm}$

Data collection

Bruker KAPPA APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\rm min} = 0.922, \ T_{\rm max} = 0.950$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.139$	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.01	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
3073 reflections	Absolute structure: Flack (1983),
137 parameters	1076 Friedel pairs
1 restraint	Flack parameter: 0.05 (9)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H2A \cdots Cl1^{i}$ $N2 - H2B \cdots Cl1$ $C3 - H3 \cdots CgA^{ii}$	0.90 0.90 0.93	2.20 2.24 2.88	3.082 (2) 3.134 (3) 3.573 (2)	168 177 133

Symmetry codes: (i) $x, -y, z + \frac{1}{2}$, (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$. CgA is the centroid of the benzene ring

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON.

The authors acknowledge the the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2720).

References

- Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Lu, Y.-X. (2007). Acta Cryst. E63, 03611.
- Sadiq-ur-Rehman, Saeed, S., Ali, S., Shahzadi, S. & Helliwell, M. (2007). Acta Cryst. E63, 04526.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zia-ur-Rahman, Ali, S., Muhammad, N. & Meetsma, A. (2006). Acta Cryst. E62, m3560-m3561.
- Zia-ur-Rahman, Ali, S., Muhammed, N. & Meetsma, A. (2007). Acta Cryst. E63, m89-m90.

supplementary materials

Acta Cryst. (2009). E65, o503 [doi:10.1107/S1600536809004280]

4-(4-Methoxyphenyl)piperazin-1-ium chloride

Zia-ur-Rehman, M. N. Tahir, M. Danish, N. Muhammad and S. Ali

Comment

In continuation to synthesizing the tin complexes containing piperazine (Zia-ur-Rahman *et al.*, 2006, 2007), the title compound (I), (Fig 1) has been obtained as a byproduct.

The crystal structures of (II) 4-nitrophenylpiperazinium chloride monohydrate (Lu, 2007) and 4-(2-pyridyl)piperazin-1ium chloride (Sadiq-ur-Rehman *et al.*, 2007) has been reported. The title compound have a replacement of nitro group in (II) with methoxy at the same position. Due to this change it is observed that (I) does not contain water molecule although the aquas medium was present during crystallization. In the title compound the benzene ring A(C1—C6) is planar along with the methoxy group. The piperazinium is in chair form with the basal plane B(C8—C11) and the N–atoms are at a distance of 0.6680 (37) and -0.6620 (46) Å. The dihedral angle between the groups A and B is 39.20 (8)°. The molecules are linked each other through intra and intermolecular H–bonding (Table 1, Fig 2). There exists a π interaction between the C3–H3 and the centroid of the benzene ring.

Experimental

 Me_2SnCl_2 (0.24 g, 1.08 mmol) in methanol (30 ml) was added dropwise to 4-(4-methoxyphenyl)piperazinium 4-(4-methoxyphenyl)piperazine-1-carbodithioate (0.5 g, 1.08 mmol) in methanol (30 ml) and the mixture was refluxed for 3 h with constant stirring. The 4-(4-methoxyphenyl)piperazinium chloride thus formed, was filtered off and recrystallized from water-ethanol (1:4) to give colourless crystals.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with N–H = 0.90Å and with $U_{iso}(H) = 1.2U_{eq}(C)$, and with C–H = 0.93–0.97Å and with $U_{iso}(H) = 1.2U_{eq}(C)$ [C–H = 0.96Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl group].

Figures

Fig. 1. *ORTEP* drawing of the title compound, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.

Fig. 2. The partial packing figure (*PLATON*: Spek, 2009) which shows the dimeric nature of the compound.

4-(4-Methoxyphenyl)piperazin-1-ium chloride

Crystal data

$C_{11}H_{17}N_2O^+ \cdot CI^-$	$F_{000} = 976$
$M_r = 228.72$	$D_{\rm x} = 1.234 {\rm Mg m}^{-3}$
Orthorhombic, Iba2	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: I 2 -2c	Cell parameters from 3073 reflections
a = 10.2890 (7) Å	$\theta = 1.2 - 30.5^{\circ}$
<i>b</i> = 31.5218 (18) Å	$\mu = 0.29 \text{ mm}^{-1}$
c = 7.5909 (5) Å	T = 296 K
$V = 2461.9 (3) \text{ Å}^3$	Prismatic, colourless
<i>Z</i> = 8	$0.28\times0.22\times0.15~mm$

Data collection

Bruker KAPPA APEXII CCD diffractometer	3073 independent reflections
Radiation source: fine-focus sealed tube	2327 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\text{int}} = 0.026$
Detector resolution: 7.3 pixels mm ⁻¹	$\theta_{\rm max} = 30.5^{\circ}$
T = 296 K	$\theta_{\min} = 1.3^{\circ}$
ω scans	$h = -14 \rightarrow 12$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -42 \rightarrow 44$
$T_{\min} = 0.922, \ T_{\max} = 0.950$	$l = -5 \rightarrow 10$
7605 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^2(F_o^2) + (0.0883P)^2 + 0.0737P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.139$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$
3073 reflections	$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$
137 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
1 restraint	Extinction coefficient: 0.0136 (13)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1076 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.05 (9)

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

		1 1	1 1	1
	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.41690 (13)	0.30736 (4)	0.7357 (3)	0.0454 (4)
N1	0.30676 (15)	0.13295 (5)	0.7320 (3)	0.0407 (5)
N2	0.25384 (18)	0.04631 (6)	0.6512 (4)	0.0561 (8)
C1	0.33328 (16)	0.17757 (5)	0.7214 (3)	0.0334 (5)
C2	0.25085 (17)	0.20603 (6)	0.6364 (3)	0.0368 (6)
C3	0.27578 (17)	0.24960 (7)	0.6389 (3)	0.0362 (6)
C4	0.38456 (16)	0.26505 (6)	0.7235 (3)	0.0329 (5)
C5	0.46885 (18)	0.23669 (6)	0.8075 (3)	0.0371 (5)
C6	0.44271 (18)	0.19397 (6)	0.8060 (3)	0.0386 (6)
C7	0.3309 (3)	0.33675 (8)	0.6540 (4)	0.0641 (9)
C8	0.1772 (2)	0.11964 (7)	0.6751 (3)	0.0486 (7)
C9	0.1533 (2)	0.07386 (7)	0.7291 (4)	0.0563 (7)
C10	0.3855 (3)	0.06000 (7)	0.7054 (4)	0.0617 (9)
C11	0.4071 (2)	0.10588 (7)	0.6540 (4)	0.0513 (7)
Cl1	0.24567 (7)	0.04913 (2)	0.23863 (13)	0.0710 (3)
H2	0.17815	0.19587	0.57701	0.0442*
H2A	0.24059	0.01935	0.68585	0.0673*
H2B	0.24770	0.04718	0.53299	0.0673*
Н3	0.21888	0.26823	0.58342	0.0435*
H5	0.54265	0.24678	0.86451	0.0446*
H6	0.49937	0.17549	0.86277	0.0464*
H7A	0.36281	0.36507	0.67113	0.0962*
H7B	0.32577	0.33080	0.53014	0.0962*
H7C	0.24605	0.33421	0.70556	0.0962*
H8A	0.11208	0.13783	0.72828	0.0583*
H8B	0.17019	0.12226	0.54811	0.0583*
H9A	0.06804	0.06493	0.68906	0.0675*
H9B	0.15557	0.07151	0.85649	0.0675*
H10A	0.39486	0.05691	0.83195	0.0742*
H10B	0.45021	0.04222	0.64893	0.0742*
H11A	0.40474	0.10852	0.52670	0.0615*
H11B	0.49212	0.11503	0.69420	0.0615*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0468 (7)	0.0384 (7)	0.0510 (9)	-0.0060 (5)	-0.0035 (8)	0.0000 (8)
N1	0.0415 (8)	0.0359 (7)	0.0447 (9)	0.0009 (6)	0.0001 (9)	0.0004 (8)
N2	0.0814 (15)	0.0327 (10)	0.0542 (14)	-0.0018 (8)	-0.0042 (10)	0.0048 (9)
C1	0.0351 (8)	0.0346 (8)	0.0306 (9)	0.0019 (6)	0.0006 (9)	-0.0009 (8)
C2	0.0353 (9)	0.0401 (10)	0.0351 (11)	-0.0007 (7)	-0.0065 (8)	0.0002 (8)
C3	0.0345 (9)	0.0382 (10)	0.0359 (10)	0.0024 (7)	-0.0041 (8)	0.0011 (8)
C4	0.0340 (8)	0.0373 (8)	0.0273 (8)	-0.0021 (6)	0.0038 (8)	-0.0019 (8)
C5	0.0320 (8)	0.0467 (10)	0.0327 (9)	-0.0036 (8)	-0.0052 (8)	-0.0020 (8)
C6	0.0352 (9)	0.0458 (10)	0.0349 (10)	0.0064 (8)	-0.0030 (8)	0.0038 (8)
C7	0.0701 (16)	0.0391 (12)	0.083 (2)	-0.0030 (11)	-0.0173 (15)	0.0059 (12)
C8	0.0468 (11)	0.0391 (11)	0.0599 (16)	-0.0038 (9)	-0.0042 (10)	-0.0035 (9)
C9	0.0571 (12)	0.0463 (11)	0.0654 (15)	-0.0088 (9)	0.0005 (14)	0.0007 (13)
C10	0.0658 (14)	0.0392 (11)	0.080 (2)	0.0088 (10)	0.0024 (14)	0.0063 (12)
C11	0.0502 (12)	0.0381 (10)	0.0655 (15)	0.0066 (9)	0.0077 (11)	0.0001 (10)
C11	0.1167 (6)	0.0368 (3)	0.0596 (4)	0.0072 (3)	-0.0038 (4)	-0.0031 (3)
Geometric pa	rameters (Å, °)					
O1—C4		1.378 (2)	C10–	-C11	1.51	4 (3)
O1—C7		1.423 (3)	C2—	H2	0.93	500
N1-C1		1.435 (2)	С3—	H3	0.93	600
N1—C8		1.463 (3)	C5—	Н5	0.93	00
N1-C11		1.464 (3)	С6—	H6	0.93	00
N2—C9		1.474 (3)	С7—	H7A	0.96	500
N2-C10		1.480 (4)	С7—	H7B	0.96	500
N2—H2A		0.9000	С7—	H7C	0.96	500
N2—H2B		0.9000	C8—	H8A	0.97	700
C1—C2		1.393 (3)	C8—	H8B	0.97	700
C1—C6		1.396 (3)	С9—	H9A	0.97	/00
С2—С3		1.397 (3)	С9—	H9B	0.97	700
C3—C4		1.379 (3)	C10–	-H10A	0.97	/00
C4—C5		1.399 (3)	C10–	-H10B	0.97	/00
C5—C6		1.373 (3)	C11–	-H11A	0.9700	
С8—С9		1.520 (3)	C11–	-H11B	0.97	/00
Cl1…N2		3.134 (3)	H2…I	H8A	2.2600	
Cl1…N2 ⁱ		3.082 (2)	H2…I	H8B	2.33	600
Cl1···H2A ¹		2.2000	H2A·	\cdots Cl1 ^{V1}	2.2000	
Cl1…H9B ⁱⁱ		3.1300	H2B·	··H11A	2.52	200
Cl1…H2B		2.2400	H2B·	··Cl1	2.24	00
Cl1…H7A ⁱⁱⁱ		2.9700	H2B·	··H8B	2.50	000
O1…H2 ^{iv}		2.7700	Н3…(C5 ⁱⁱⁱ	2.85	500
$O1 \cdots H8A^{v}$		2.6500	Н3…С	27	2.51	00
N1…N2		2.852 (3)	H3…I	H7B	2.29	000

N2…N1	2.852 (3)	H3…H7C	2.2900
N2…Cl1	3.134 (3)	H3····C6 ⁱⁱⁱ	2.9400
N2…Cl1 ^{vi}	3.082 (2)	H3····C5 ^{vii}	3.0900
N1···H7B ^{iv}	2.8800	H5····C3 ^{ix}	2.8000
C2···C4 ⁱⁱⁱ	3.549 (3)	H5…C3 ^v	2.9500
C3···C5 ^{vii}	3.435 (3)	H5…C4 ^{ix}	2.8800
C3···C5 ⁱⁱⁱ	3.585 (3)	H6…C11	2.8700
C3···C4 ⁱⁱⁱ	3.589 (3)	H6…H11B	2.3000
C4···C2 ^{iv}	3 549 (3)	H74C11 ^{iv}	2,9700
C1C3 ^{iv}	3 589 (3)	H7B···C3	2 7400
C5 - C3	3 435 (3)		2.7100
	3,585 (3)	H7BH3	2.0700
	3.585 (5)		2.2900
	2.8700	H/B···NI ^{····}	2.8800
C2···H8A	2.6700	H7B…H8A…	2.5800
	2.8500	H/C···H3	2.2900
C3···H5 ^{viii}	2.8000		2.7300
C3···H5 ^{vn}	2.9500	H8A···C2	2.6700
СЗ…Н7С	2.7300	H8A···H7B ^{IV}	2.5800
С3…Н7В	2.7400	H8A…O1 ^{vn}	2.6500
C4···H2 ^{iv}	3.0200	H8A…H2	2.2600
C4…H5 ^{viii}	2.8800	H8A…C7 ^{vii}	3.0500
C5···H3 ^v	3.0900	H8B…H2B	2.5000
C5···H3 ^{iv}	2.8500	H8B…H11A	2.4600
C6…H11B	2.6800	H8B…C2	2.8500
C6···H3 ^{iv}	2.9400	H8B…H2	2.3300
C7…H8A ^v	3.0500	H9B···Cl1 ^x	3.1300
С7…Н3	2.5100	H9B…H10A	2.5100
C8…H2	2.5200	Н10А…Н9В	2.5100
C11H6	2.8700	H11A…H2B	2.5200
H2···C8	2.5200	HIIA···H8B	2.4600
H2…C4 ^{III}	3.0200	HIIB···H6	2.3000
H2···O1 ^m	2.7700	H11B…C6	2.6800
C4—O1—C7	116.79 (18)	С6—С5—Н5	120.00
C1—N1—C8	115.97 (16)	С1—С6—Н6	119.00
CI = NI = CII	114.48 (16)	$C_5 - C_6 - H_6$	100.00
$C_{0} = N_{1} = C_{10}$	110.85(17) 111.0(2)	01—C7—H7B	109.00
C9—N2—H2B	109.00	01—C7—H7C	109.00
C10—N2—H2A	109.00	Н7А—С7—Н7В	109.00
C10—N2—H2B	109.00	H7A—C7—H7C	109.00
H2A—N2—H2B	108.00	Н7В—С7—Н7С	109.00
C9—N2—H2A	109.00	N1—C8—H8A	110.00
N1—C1—C2	122.78 (16)	N1—C8—H8B	110.00
NI-CI-C6	119.39 (17)	С9—С8—Н8А	110.00

supplementary materials

C2—C1—C6	117.76 (16)	С9—С8—Н8В	110.00
C1—C2—C3	120.99 (17)	H8A—C8—H8B	108.00
C2—C3—C4	120.16 (18)	N2—C9—H9A	110.00
O1—C4—C5	115.99 (17)	N2—C9—H9B	110.00
O1—C4—C3	124.69 (18)	С8—С9—Н9А	110.00
C3—C4—C5	119.31 (18)	С8—С9—Н9В	110.00
C4—C5—C6	120.09 (18)	Н9А—С9—Н9В	108.00
C1—C6—C5	121.68 (18)	N2-C10-H10A	110.00
N1—C8—C9	109.88 (17)	N2-C10-H10B	110.00
N2—C9—C8	109.72 (19)	C11-C10-H10A	110.00
N2-C10-C11	110.0 (2)	C11-C10-H10B	110.00
N1-C11-C10	110.4 (2)	H10A—C10—H10B	108.00
C1—C2—H2	119.00	N1-C11-H11A	110.00
С3—С2—Н2	120.00	N1-C11-H11B	110.00
С2—С3—Н3	120.00	C10-C11-H11A	110.00
С4—С3—Н3	120.00	C10-C11-H11B	110.00
C4—C5—H5	120.00	H11A—C11—H11B	108.00
C7—O1—C4—C3	-0.2 (3)	N1—C1—C2—C3	175.8 (2)
C7—O1—C4—C5	-178.8 (2)	C6-C1-C2-C3	-1.2 (3)
C8—N1—C1—C2	-10.2 (3)	N1-C1-C6-C5	-176.6 (2)
C8—N1—C1—C6	166.8 (2)	C2-C1-C6-C5	0.5 (3)
C11—N1—C1—C2	120.9 (2)	C1—C2—C3—C4	1.2 (3)
C11—N1—C1—C6	-62.2 (3)	C2-C3-C4-O1	-179.0 (2)
C1—N1—C8—C9	-168.1 (2)	C2—C3—C4—C5	-0.4 (3)
C11—N1—C8—C9	59.1 (3)	O1—C4—C5—C6	178.4 (2)
C1-N1-C11-C10	167.9 (2)	C3—C4—C5—C6	-0.3 (3)
C8—N1—C11—C10	-58.6 (3)	C4—C5—C6—C1	0.3 (3)
C10—N2—C9—C8	57.6 (3)	N1—C8—C9—N2	-58.2 (3)
C9—N2—C10—C11	-56.9 (3)	N2-C10-C11-N1	56.8 (3)

Symmetry codes: (i) *x*, -*y*, *z*-1/2; (ii) *x*, *y*, *z*-1; (iii) -*x*+1/2, -*y*+1/2, *z*-1/2; (iv) -*x*+1/2, -*y*+1/2, *z*+1/2; (v) *x*+1/2, -*y*+1/2, *z*; (vi) *x*, -*y*, *z*+1/2; (vii) *x*-1/2, -*y*+1/2, *z*; (viii) -*x*+1, *y*, *z*-1/2; (ix) -*x*+1, *y*, *z*+1/2; (x) *x*, *y*, *z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2A…Cl1 ^{vi}	0.90	2.20	3.082 (2)	168
N2—H2B…Cl1	0.90	2.24	3.134 (3)	177
C3—H3···CgA ⁱⁱⁱ	0.93	2.88	3.573 (2)	133

Symmetry codes: (vi) x, -y, z+1/2; (iii) -x+1/2, -y+1/2, z-1/2.

Fig. 1

